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Abstract
In this work we present the results of theoretical analysis of the de Haas–van Alphen
oscillations in quasi-two-dimensional conductors. We have been studying the effect of the
Fermi-liquid correlations of charge carriers on the above oscillations. It was shown that at
reasonably low temperatures and weak electron scattering the Fermi-liquid interactions may
cause noticeable changes in both amplitude and shape of the oscillations even at realistically
small values of the Fermi-liquid parameters. Also, we show that the Fermi-liquid interactions in
the system of the charge carriers may cause magnetic instability of a quasi-two-dimensional
conductor near the peaks of quantum oscillations in the electron density of states at the Fermi
surface, indicating the possibility for the diamagnetic phase transition within the relevant ranges
of the applied magnetic fields.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic quantum oscillations [1–3] have been recognized
as one of the major tools to map Fermi surfaces (FSs) in
metals. Analysis of the experimental data is now a well
established procedure and is based on the classical paper by
Lifshitz and Kosevich (LK) [4], who first laid out a quantitative
theory of the de Haas–van Alphen effect. The LK expression
for the oscillating part of the thermodynamic potential and
magnetization of metallic electrons in a strong (quantizing)
magnetic field B was derived assuming that conduction
electrons are noninteracting quasiparticles in a periodic crystal
potential. This potential determines the electron dispersion,
E(p) (p being the electron quasimomentum), and therefore
the effective mass of conduction electrons m∗ and their FS.
In fact, conduction electrons interact with each other. Studies
of modifications of the LK results arising due to electron–
electron interactions within the general many-body quantum
field-theoretical approach started in the early 1960s in the
works of Luttinger [5], and continued through the next three
decades [6]. It was shown that electron–electron interactions

may bring noticeable changes in the de Haas–van Alphen
oscillations, which makes further analysis worthwhile.

One of the oldest and still powerful methods to deal
with electron–electron interaction is the Landau Fermi-liquid
(FL) theory [7–9]. It is important to realize that while the
phenomenological Fermi-liquid theory and the microscopic
many-body perturbation theory (and, when applicable, the
exact density functional theory) by definition lead to the same
observable quantities, such as response to an external field,
both the zero approximation and its renormalization depend on
the approach taken. A discussion to this effect in application
to the dielectric response of metals can be found, for instance,
in [10]. It is always instructive to look at the same phenomenon
from different points of view. Respecting the value of
the many-body perturbation theory as applied to quantum
oscillations [6], we emphasize that the Fermi-liquid theory has
provided important insights in such areas, relevant for the de
Haas–van Alphen physics, as high frequency collective modes
in metals [11–16], or oscillations of various thermodynamic
observables in quantizing magnetic fields [17–20].
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An advantage of this phenomenological theory is that it
enables us to describe the effects of quasiparticle interactions
in a way that makes the interpretation of the results
rather transparent, as compared with the field-theoretical
methods. At the same time the many-body approach brings
general but cumbersome results, and usually it takes great
calculational efforts and/or significant simplifications to get
suitable expressions for comparison with experimental data.
What is more important, adopted simplifications may lead
to omission of some qualitative effects of electron–electron
interactions in quantum oscillations, as we show below.

In the last two decades an entire series of quasi-two-
dimensional (Q2D) materials with metallic type conductivity
has been synthesized. These are organic conductors belonging
to the family of tetrathiafulvalene salts, dichalcogenides of
transition metals, intercalated compounds and some others. At
present, these materials attract a significant interest. Their
electronic properties are intensively studied, and the de Haas–
van Alphen effect is employed as a tool in these studies [2, 3].
Correspondingly, the theory of this effect in the Q2D materials
is currently being developed [21–26]. The present analysis
of the effect of Fermi-liquid interactions on the de Haas–van
Alphen oscillations contributes to the above theory. Also, the
analysis is motivated by the special features in the electron
spectra in Q2D materials providing better opportunities for
the Fermi-liquid effects to be manifested, as was mentioned
in some earlier works [17, 20].

In this paper we show how renormalizations of conduction
electron characteristics arising from FL interactions affect
quantum oscillations, and we express them in the form
appropriate for comparison with experiments. Also, we show
that a magnetic phase transition leading to emergence of
diamagnetic domains may happen at low temperatures when
the cyclotron quantum h̄ω is very large compared to the
temperature expressed in the energy units: (h̄ω � kBT ).
We emphasize that the analyzed effects are different from the
many-body renormalizations of the band structure. Within the
phenomenological theory the latter are already included in the
ground state of conduction electrons.

2. Fermi-liquid renormalizations of the conduction
electron characteristics

Within the phenomenological Landau FL theory single quasi-
particle energies are renormalized, and the renormalization is
determined by the distribution of excited quasiparticles. Ac-
cordingly, the energy of a ‘bare’ (noninteracting) quasiparticle
E0(p) moving in the effective crystal potential is replaced by
the renormalized energy defined by the relation [7]

Eσ (p, r, t) = E0(p)+
∑

p′σ ′
F(p, s; p′, s′)δρ(p′, s′, r, t). (1)

Note that E0(p) here is the energy spectrum in the absence
of any excited quasiparticles, that is, at equilibrium and
at zero temperature, while δρ(p′, s′, r, t) represents the
nonequilibrium part of the electron distribution function,
which may depend on both position r of the quasiparticle

and time t . Also, s, s′ are spin Pauli matrices (σ is
the spin quantum number), and F(p, s; p′, s′) is the Fermi-
liquid kernel (Landau correlation function), which describes
additional renormalization of the quasiparticle spectrum due
to interaction with other excited quasiparticles (but not with
all electrons in the system, which is included in E0(p)).
Neglecting spin–orbit interactions, the Landau correlation
function may be written as

F(p, s; p′, s′) = ϕ(p,p′)+ 4ψ(p,p′)(ss′). (2)

As follows from equation (1), the conduction electron
velocity v = ∇p E differs from the bare velocity v0 = ∇p E0.
To proceed in our analysis we need to bring velocities v and
v0 into correlation. For brevity we do not explicitly write
out the variables r, t in equation (1) in further calculations.
This omission does not influence the results. Differentiating
equation (1) we obtain

vσ (p) = v0(p)+ ∇p

[
∑

p′σ ′
F(p, s; p′, s′)δρ(p′, s′)

]
. (3)

The electron distribution function ρ(p, s) is the sum of
the equilibrium part ρ0 (the latter coincides with the
Fermi distribution function for quasiparticles with single
particle energies E0(p)) and the nonequilibrium correction
δρ. Multiplying both parts of equation (3) by ρ(p, s) and
performing summation over p, σ we get
∑

pσ

ρ(p, s)vσ (p) =
∑

pσ

ρ(p, s)v0(p)+
∑

pσ

ρ(p, s)∇p

×
[
∑

p′σ ′
F(p, s; p′, s′)δρ(p′, s′)

]
. (4)

The second term on the right-hand side of equation (4) could
be converted to the form

−
∑

pσ

[
∑

p′σ ′
F(p, s; p′, s′)δρ(p′, s′)

]
∇pρ(p, s). (5)

Keeping only the terms linear in δρ (which is supposed to
be small compared to the equilibrium part of the distribution
function), we may approximate ∇pρ as vσ (p)

∂ fpσ

∂Epσ
. Here, f is

the Fermi distribution function and the quasiparticle energies
Eσ (p) correspond to the local equilibrium of the electron
liquid. Also, assuming that the FS of a considered metal
possesses a center of symmetry, we get

∑

pσ

ρ(p, s)vσ (p) =
∑

pσ

δρ(p, s)vσ (p),

∑

pσ

ρ(p, s)v0(p) =
∑

pσ

δρ(p, s)v0(p).
(6)

Then, using the well known relation F(p, s; p′, s′) =
F(p′, s′; p, s) and carrying out the replacement p, s � p′, s′

2
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in the sums included in equation (5), we could rewrite
equation (4) as

∑

pσ

δρ(p, s)

[
vσ (p)+

∑

pσ

∂ fp′σ ′

∂Ep′σ ′
F(p, s; p′, s′)vσ ′(p′)

]

=
∑

pσ

δρ(p, s)v0(p). (7)

Solving this for v, we obtain

vσ (p) = v0(p)−
∑

p′,σ ′

∂ fp′σ ′

∂Ep′σ ′
F(p, s; p′, s′)vσ ′(p′). (8)

Exact expressions for the functions ϕ(p,p′) and ψ(p,p′)
are of course unknown. The simplest approximation is to
treat them as constants. This approximation is reasonable as
long as the interaction of quasiparticles (located at r and r′,
respectively) is extremely short range, so that the interaction
can be approximated as V (r, r′) = Iδ(r − r′). Using this
approximation one captures some FL effects but in the general
case it is not sufficient.

As a next step, one may expand the Fermi-liquid functions
in the equation (2) in basis functions respecting the crystal
symmetry, such as Allen’s Fermi surface harmonics [27]:

ϕ(p,p′) =
d∑

j=1

d j∑

m=1

ϕ j(p, p′)R jm(θ,
)R
∗
jm(θ

′,
′),

ψ(p,p′) =
d∑

j=1

d j∑

m=1

ψ j (p, p′)R jm(θ,
)R
∗
jm(θ

′,
′).

(9)

Here, we introduce spherical coordinates for p: p =
(p, θ,
); d is the order of the point group; index j labels
irreducible representations of the group; d j is the dimension
of the j th irreducible representation; {R jm(θ,
)} is a basis of
the j th irreducible representation including d j functions.

For an isotropic metal the spherical harmonics Y jm can be
used as the basis. Including orbital moments up to j = 2 we
have, for a cubic symmetry (cubic harmonics),
(
ϕ(p,p′)
ψ(p,p′)

)
=

(
ϕ0

ψ0

)
+

(
ϕ1

ψ1

)
(px p′

x + py p′
y + pz p′

z)

+
(
ϕ21

ψ21

)
(pz p′

z px p′
x + pz p′

z py p′
y + px p′

x py p′
y)

+
(
ϕ22

ψ22

)
(p2

x − p2
y)(p′2

x − p′2
y )

+ 1
3

(
ϕ22

ψ22

)
(2p2

z − p2
x − p2

y)(2p′2
z − p′2

x − p′2
y ). (10)

The coefficients ϕ,ψ are material dependent constants. A
common feature of Q2D metals is their layered structure with
a pronounced anisotropy of the electrical conductivity. In
such materials electron energy only weakly depends on the
quasimomentum projection p = pn on the normal n to the
layer plane. In further consideration we assume n = (0, 0, 1)
and we neglect the asymmetries of the electron spectrum in
the layer planes. Then the relevant Fermi surface is axially
symmetrical.

For systems with an axial symmetry this expression (10)
needs to be correspondingly modified. For instance, in the first
order we have(
ϕ(p,p′)
ψ(p,p′)

)
=

(
ϕ0

ψ0

)
+

(
ϕ10

ψ10

)
pz p′

z

+
(
ϕ11

ψ11

)
(px p′

x + py p′
y). (11)

This expression will be used from now on in the present paper.
When an external magnetic field B = (0, 0, B) is applied

the spin degeneracy of the single electron energies is lifted, and
we can write

E0σ (p) = E0(p)+ σgβ0 B ≡ E0(p)+�E0, (12)

where E0(p) does not depend on the electron spin, g is
the electron Landé factor, and β0 = eh̄/2m0c is the Bohr
magneton (m0 is the free electron mass). The nonequilibrium
correction to the electron distribution function satisfies the
equation [7]

δρ(p, s) = δρ(p, s)+ ∂ fpσ

∂Epσ

∑

p′,σ ′
F(p, s,p′, s′)δρ(p′, s′),

(13)
where δρ(p, s) describes the deviation of the electron liquid
from the state of local equilibrium. When the deviation
arises due to the effect of the applied magnetic field δρ =
−(∂ fpσ /∂Epσ )gβσ B . Substituting equation (11) into (13) and
using the result in equation (1) we get

�E = �E0 − b∗σgβ0 B ≡ σgβ0 B

1 + b0
, (14)

where b∗ = b0/(1 + b0), and b0 is a dimensionless parameter
describing FL interactions of the conduction electrons, namely
b0 = −ν0(0)ψ0, where ν0(0) is the density of states of
noninteracting conduction electrons on the Fermi surface in the
absence of the magnetic field. This is nothing but the standard
Stoner renormalization of the paramagnetic susceptibility.
Note that here ψ0 plays the role of the Stoner parameter
I = 〈δ2 Exc/δρ↑δρ↓〉 in the density functional theory, or of
the contact Coulomb interaction in the many-body theory.

The Luttinger theorem dictates the Fermi surface volume.
Therefore, the radius and the cross-sectional areas of the
Fermi sphere associated with an isotropic Fermi liquid remain
unchanged due to quasiparticle interactions. In realistic metals
whose conduction electrons form anisotropic Fermi liquids
one may expect some minor changes in the FS geometry to
appear. Such effects could be considered elsewhere. In the
present work we neglect them. So, in further consideration
we assume that FL interactions do not affect the FS geometry.
Then the cross-sectional areas of the Fermi surface A(pz)

cut out by the planes perpendicular to the magnetic field
B do not change when electron–electron interactions are
accounted for. However, the cyclotron masses of conduction
electrons undergo renormalization due to the electron–electron
interactions. The cyclotron mass is defined as

m⊥ = 1

2π

∂A

∂E

∣∣∣∣
E=μ

≡
∮

dl

v⊥
. (15)

3
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Here, dl =
√

dp2
x + dp2

y is the element of length along

the cyclotron orbit in the quasimomentum space, v⊥ =√
v2

x + v2
y, vα = ∂E/∂pα (α = x, y), and μ is the chemical

potential of conduction electrons.
Substituting equation (11) into (8) we get v⊥ = v⊥0/(1 +

a1) where v⊥0 =
√
v2

x0 + v2
y0, and a1 is related to the FL

parameter ϕ11 as follows:

− ν0(0)p2
0ϕ11/3 = a1, (16)

where p0 is the maximum value of the longitudinal component
of quasimomentum. So we get

m⊥ = m⊥0(1 + a1), (17)

m⊥0 being the cyclotron mass of noninteracting quasiparticles.
In the case of an isotropic electron system the cyclotron
mass m⊥0 coincides with the crystalline effective mass m∗.
Therefore, our result agrees with the standard isotropic FL
theory.

Other quantities, such as the chemical potential of
conduction electrons and their compressibility, may experience
different renormalizations, as well. The latter, for instance, is
renormalized by a factor 1/(1 + a0) = 1/[1 − ν0(0)ϕ0], and
the former by the factor (1 + a0) [7]. So, the renormalized
density of states ν(0) appears in the expressions for the electron
compressibility and the velocity of sound in metals.

The model of the extremely short range (contact)
Coulomb interaction between quasiparticles is often employed,
while applying the many-body theoretical approach to study
the de Haas–van Alphen effect (see e.g. [6]). Within
the phenomenological FL theory this model results in the
approximation of the functions ϕ(p,p′) and ψ(p,p′) by
constants ϕ0 and ψ0, respectively. Such approximation enables
us to get the Stoner renormalization of the paramagnetic
susceptibility, and electron compressibility as shown above.
However, it misses Fermi-liquid effects associated with the
subsequent FL coefficients included in equations (9)–(11),
which could be significant in renormalizations of other
parameters characterizing the charge carriers such as their
cyclotron masses.

3. Quantum oscillations of the longitudinal velocity
of charge carriers in Q2D conductors

In further calculations we adopt the commonly used tight-
binding approximation for the charge carrier spectrum in a
quasi-two-dimensional metal. So, when a quantizing magnetic
field is applied, the charge carrier energies may be written in
the form

E0(n, pz, σ ) = h̄ω

(
n + 1

2

)
+σ h̄ω0−2t cos

(
π

pz

p0

)
, (18)

where h̄ω0 is the spin splitting energy, t is the interlayer
transport integral, and p0 = π h̄/L where L is the interlayer
distance. This expression (18) describes single-particle
energies of noninteracting quasiparticles. Now, the relation of

matrix elements of renormalized vνν′ and bare v0νν′ velocities
in accordance with equation (8) takes on the form [9]

vνν′ = v0νν′ −
∑

ν1ν2

fν1 − fν2

Eν1 − Eν2

Fν1ν2
νν′ vν1ν2 . (19)

Here, Eν is the quasiparticle energy including the correction
arising due to the FL interactions, and ν = {α, σ } is the
set of quantum numbers of an electron in the magnetic field.
The subset α includes the orbital numbers n, pz and x0 (the
latter labels the positions of the cyclotron orbit centers). Also,
Fν1ν2
νν′ = ϕ

α1α2
αα′ + 4ψα1α2

αα′ (ss1) are the matrix elements of the
Fermi-liquid kernel.

For an axially symmetrical FS the off-diagonal matrix
elements of the longitudinal velocity vanish and we obtain

vνν = v0νν −
∑

ν1

d fν1

dEν1

Fν1ν1
νν vν1ν1 . (20)

Substituting the expression for the Fermi-liquid kernel into
equation (20), we get

vνν = vααδσσ ′ + σvs
αα, (21)

where both vαα and vs
αα only depend on pz , so in the further

calculations we will use the notation vαα ≡ v(pz), v
s
αα ≡

vs(pz). These matrix elements could be found from the system
of equations that results from equations (20) and (21):

v(pz) =
[
v0(pz)−

∑

α1

ϕα1α1
αα

(
v(p1z)�α1α1 + vs(p1z)�

s
α1α1

)]
,

(22)
vs(pz) = −

∑

α1

ψα1α1
αα

(
v(p1z)�

s
α1α1

+ vs(p1z)�α1α1

)
. (23)

Here,

�α1α1 =
∑

σ1

d fα1σ1

dEα1σ1

, �s
α1α1

=
∑

σ1

d fα1σ1

dEα1σ1

σ1. (24)

The de Haas–van Alphen oscillations are observed in magnetic
fields when the Landau level spacing is small compared to
the chemical potential of electrons (h̄ω � μ). Under these
conditions we may approximate the Fermi-liquid kernel by its
expression in the absence of the magnetic fields (equation (2)).
Using the above-described approximation of the Fermi-liquid
functions ϕ(p,p′) ψ(p,p′), equation (11), we can solve
equations (22) and (23). To this end, we need some averages
over the Fermi surface, namely

R = −
∑

α

�ααv0(pz)pz = − 1

4π h̄λ2

×
∑

n,σ

∫
d f (En,σ (pz))

dEn,σ (pz)
v0(pz)pz dpz. (25)

R′ = −
∑

α

�s
ααv0(pz)pz. (26)

The Fermi-liquid effects enter the systems (22) and (23)
through the averages A, A′, B, B ′ closely related to the Fermi-
liquid parameters:

A = −ϕ10

∑

α

�αα p2
z , A′ = −ϕ10

∑

α

�s
αα p2

z . (27)

4
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The expressions for B, B ′ could be obtained replacing ϕ10 by
ψ10 in equation (27).

Applying the Poisson summation formula,

∞∑

n=0

ϕ(n) =
∞∑

r=−∞

∫ ∞

0
exp(2π irn)ϕ(n) dn (28)

to equation (24), we get

R = − 1

4π h̄λ2

∑

σ

∫
dn

∫
dpz

d f (En,σ (pz))

dEn,σ (pz)
v0(pz)pz

×
{

1 + 2 Re
∞∑

r=1

exp(2π irn)

}
. (29)

So, we see that oscillating terms appear in the expressions
for R and other averages over the Fermi surface included
in equations (22) and (23). For this reason, an oscillating
term occurs in the resulting formula for the renormalized
longitudinal velocity vσ (pz). This oscillating term originates
from the Fermi-liquid interactions between charge carriers, and
it appears only when the FL coefficients ϕ10 and ψ10 are taken
into account, that is, beyond the contact approximation for the
Coulomb interaction.

We get the following results for the oscillating parts of
R, R′:

R̃ = 2N

(
B

F

)
�, R′ = 2N

(
B

F

)
�s, (30)

where N is the electron density, and the functions � and �s

have the form

� =
∞∑

r=1

(−1)r

πr
D(r) sin

(
2πr

F

B

)
cos

(
πr
ω∗

0

ω∗

)

× J0

(
4πr

t

h̄ω∗

)
, (31)

�s =
∞∑

r=1

(−1)r

πr
D(r) cos

(
2πr

F

B

)
sin

(
πr
ω∗

0

ω∗

)

× J0

(
4πr

t

h̄ω∗

)
. (32)

Here, F = cA0/2π h̄e, A0 is the FS cross-sectional
area at pz = ±p0/2; and the cyclotron quantum h̄ω∗
and spin-splitting energy h̄ω∗

0 are renormalized according to
equations (14) and (17). The damping factor D(r) describes
the effects of the temperature and electron scattering on
the magnetic quantum oscillations, and J0(x) is the Bessel
function. The simplest and best known approximation for
D(r) equates it to the product RT (r)Rτ (r), where RT (r) =
r x/ sinh(r x) (x = 2π2kBT/h̄ω∗) is the temperature factor
and Rτ (r) = exp[−πr/ω∗τ ] is the Dingle factor describing
the effects of electron scattering characterized by the scattering
time τ . The temperature factor appears in equations (31)
and (32) as a result of standard calculations repeatedly
described in the relevant works starting from the LK paper [4].
The Dingle factor cannot be straightforwardly computed
starting from the expressions like (25) and (26). This term
is phenomenologically included in equation (31) and (32)
in the same way as in the Shenberg’s book [1]. Under

the low temperatures required to observe magnetic quantum
oscillations, the value of τ is mostly determined by the
impurity scattering.

Using the microscopic many-body perturbation theory it
was shown that in this case the Dingle term retains its form,
and the corresponding relaxation time could be expressed in
terms of the electron self-energy part � arising due to the
presence of impurities, namely τ−1 = 2 Im�/h̄. In strong
magnetic fields the self-energy � gains an oscillating term
which describes quantum oscillations of this quantity [23, 26].
So, the scattering time becomes dependent on the magnetic
field B. A thorough analysis carried out in the earlier works
of Champel and Mineev [26] and Grigoriev [23] shows that the
oscillating correction to the scattering time could be neglected
when the FS of a Q2D metal is noticeably warped (4π t >
h̄ω∗). In such cases one may treat τ as a phenomenological
constant. However, when the FS is very close to a pure cylinder
(4π t � h̄ω∗) the scattering time oscillations must be taken
into consideration in studies of the de Haas–van Alphen effect.
These oscillations may bring some changes in both shape and
magnitude of the magnetization oscillations but we do not
discuss the issue in the present work. In further analysis we
assume that 4π t > h̄ω∗.

One may notice that the oscillating function� has exactly
the same form as that describing the magnetization oscillations
in Q2D metals when the Fermi-liquid effects are omitted from
the consideration (see e.g. [23, 24]). Also, the Fermi-liquid
terms included in the expression (27) exhibit oscillations in
the strong magnetic field. For instance, applying the Poisson
summation formula to the expressions (27) we can convert
these expressions to the form A = a1(1+δ), A′ = a1δ

s , where
the oscillating functions δ and δs are

δ =
∞∑

r=1

(−1)r D(r) cos

(
2πr

F

B

)
cos

(
πr
ω∗

0

ω∗

)
S

(
4πr t

h̄ω∗

)

−
∞∑

r=1

(−1)r D(r) sin

(
2πr

F

B

)
cos

(
πr
ω∗

0

ω∗

)

× Q

(
4πr t

h̄ω∗

)
, (33)

δs =
∞∑

r=1

(−1)r D(r) sin

(
2πr

F

B

)
sin

(
πr
ω∗

0

ω∗

)
S

(
4πr t

h̄ω∗

)

+
∞∑

r=1

(−1)r D(r) cos

(
2πr

F

B

)
sin

(
πr
ω∗

0

ω∗

)

× Q

(
4πr t

h̄ω∗

)
. (34)

The factors S and Q entering equations (33) and (34) are
expressed in the series of the Bessel functions:

S(x) = J0(x)+ 3

2π2

∞∑

m=1

(−1)m

m2
J2m(x), (35)

Q(x) = 6

π2

∞∑

m=0

(−1)m

(2m + 1)2
J2m+1(x). (36)
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The expressions for B, B ′ are similar to those for A, A′ and
we may get to the former by replacing the factor a1 by
another constant b1. The oscillating function δ behaves like
the function describing quantum oscillations of the charge
carrier density of states (DOS) on the FS of a Q2D metal (see
the appendix). As for the parameters a1, b1 we can define
a1 = −ν0(0)p2

0ϕ10/3 and b1 is similarly defined, namely
b1 = −ν0(0)p2

0ψ10/3.We remark that the parameter a1 differs
from a1, which enters the expression for the cyclotron mass
(see equation (17)). This reflects the anisotropy of electron
properties in Q2D conductors.

4. Quantum oscillations in the magnetization

To compute the longitudinal magnetization M‖, we start from
the standard expression:

M‖(B, T, μ) ≡ Mz(B, T, μ) = −
(
∂�

∂B

)

T,μ

. (37)

Here, the magnetization depends on the temperature T and on
the chemical potential of the charge carriers μ, and H is the
external magnetic field related to the field B inside the metal as
B = H + 4πM. When the magnetic field is directed along a
symmetry axis of a high order we may assume that the fields B
and H are parallel. One may neglect the difference between B
and H when the magnetization is weak. Otherwise, the uniform
magnetic state becomes unstable, and the Condon diamagnetic
domains form, with the alternating signs of the longitudinal
magnetization1. We will discuss this possibility later. Now, we
neglect the difference between H and B in equation (37). To
incorporate the effects of electron interactions we assume, in
the spirit of the FL theory, that the thermodynamic potential
� has the same form as for noninteracting quasiparticles, but
with the quasiparticle energies fully renormalized by their
interaction:

� = −kBT
∑

ν

ln

{
1 + exp

[
μ− Eν

kBT

]}
. (38)

In this expression Eν is the quasiparticle energy including the
correction arising due to the FL interactions, and kB is the
Boltzmann’s constant.

Accordingly, we rewrite equation (38) as follows:

� = − kBT

4π2h̄λ2

∑

n,σ

∫
ln

{
1 + exp

[
μ− En,σ (pz)

kBT

]}
dpz,

(39)
where λ2 = h̄c/eB is the squared magnetic length. Performing
integration by parts, equation (39) becomes

� = − 1

4π2h̄λ2

∑

n,σ

∫
f (En,σ (pz))vσ (pz)pz dpz. (40)

Applying the Poisson summation formula, we get

� = − 1

4π2h̄3λ2

∑

σ

∫
dn

∫
dpz f (En,σ (pz))vσ (pz)pz

×
{

1 + 2 Re
∞∑

r=1

exp[2π irn]
}
. (41)

1 A review of the current theory of the diamagnetic phase transitions in metals
is given by [28]

So we see that the expression for the thermodynamic potential
includes two oscillating terms. One originates from the
oscillating part of vσ (pz). The second term inside the braces
in the equation (41) gives another oscillating contribution.

The effects of temperature and spin splitting on
the magnetic oscillations are already accounted for in
equation (41). Assuming 4π t > h̄ω, we take into account the
effect of electron scattering, adding an imaginary part ih̄/2τ
to the electron energies [1]. After standard manipulations, we
obtain the following expression for the oscillating part of the
longitudinal magnetization:

�M‖ = −2Nβ
ω∗

0

ω∗ (1 − 3a∗
1)

× �− 3(a∗
1 + b∗

1)δ + 3b∗
1(�δ −�sδs)− 9a∗

1b∗
1(δ

2 − δs2)

1 + 3(a∗
1 + b∗

1)δ + 9a∗
1b∗

1(δ
2 − δs2)

,

(42)

where a∗
1 = a1/(1 + 3a1); b∗

1 = b1/(1 + 3b1). This
is the main result of the present work. It shows that the
Fermi-liquid interactions may bring significant changes in
the de Haas–van Alphen oscillations. Below, we analyze
these changes. If we may neglect the oscillating corrections
proportional to a∗

1 , b∗
1, then our result for �M‖ reduces to the

usual LK form with some renormalizations arising from the
quasiparticle interactions. The cyclotron mass m⊥ differs from
the bare Fermi-liquid cyclotron mass before the quasiparticle
interaction is taken into account (cf. equation (17)), and h̄ω∗

0
includes the extra factor (1 + b0)

−1. Also, the factor (1 −
3a∗

1) modifies the magnetic oscillation magnitudes. As for
the oscillation frequencies, they remain unchanged by the FL
interactions, as expected.

5. Discussion

Comparing our result (42) with the corresponding result
reported by Wasserman and Springfield [6], we see that
these results agree with each other. A seeming difference
in the expressions for the oscillation frequencies arises due
to the fact that in [6] the frequencies are expressed in
terms of the chemical potential of electrons μ instead of
the cross-sectional areas of the Fermi surface. It is worth
reiterating that ‘unrenormalized’ mass in the FL theory
is already renormalized (sometimes strongly) from fully
noninteracting (or density-functional-calculated) mass. Again,
we remark that the present analysis was carried out assuming
noticeable/significant FS warping (4π t > h̄ω∗), so we may
neglect the magnetic field dependence of the electron scattering
τ , treating the latter as a constant phenomenological parameter.
This results in a simple form of the Dingle damping factor
Rτ (r) describing the effects of electron impurity scattering.

The LK form of the expression for the longitudinal
magnetization is suitable to describe de Haas–van Alphen
oscillations in conventional three-dimensional metals within
the whole range of temperatures. However, this is not true
for quasi-two-dimensional conductors. The Fermi surface
of such a conductor is nearly cylindrical in shape, therefore
the oscillating term in the denominator of equation (42)
significantly increases. The oscillations of the denominator

6
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Figure 1. The magnetic field dependences of the functions δ (solid
lines) and δs (dashed lines). The curves are plotted at B0 = 10 T,
F/B0 = 300, 2π2θ∗/h̄ω∗ = 0.5 for t/h̄ω∗ = 2 (left panel) and
t/h̄ω∗ = 0.3 (right panel).

of equation (42) occur due to the functions δ and δs . These
functions are presented in figure 1, and we see that at low
temperatures and weak scattering ln(h̄ω∗/kBT ∗) > t/h̄ω∗
(T ∗ = T + TD, TD = h̄/2πkBτ is the Dingle temperature)
the peak values may be of the order of unity, especially for a
rather weakly warped FS (t/h̄ω∗ ∼ 0.1–0.5). So, quantum
oscillations in the magnetization in the electron Fermi liquid
in quasi-two-dimensional metals may have more complicated
structure than those in the electron gas described by the
LK formula [4]. The effect of the Fermi-liquid interactions
on these oscillations depends on the values of the Fermi-
liquid parameters a∗

1 , b∗
1 and on the damping factor D(r) =

RT (r)Rτ (r) included in the expressions for the oscillating
functions. The FS shape determined by the ratio t/h̄ω is
important as well.

The most favorable conditions for the changes in the
magnetization oscillations to be revealed occur when the
oscillating terms in the denominator of equation (42) may take
on values of the order of unity at the peaks of oscillations.
We may estimate the peak values δm and δs

m of the functions
included in the above denominator using the Euler–Macloren
formula. The estimations depend on the shape of the FS of
the Q2D conductor. When the FS is significantly crimped
(t � h̄ω) we obtain δm, δ

s
m ∼ (h̄ω/t)1/2(kBT ∗)−1/2.

So, we may expect the Fermi-liquid interaction to be
distinctly manifested in the magnetization oscillations when
|a∗

1 |(h̄ω/t)1/2(kBT ∗)−1/2 ∼ 1 or |b∗
1|(h̄ω/t)1/2(kBT ∗)−1/2 ∼

1 or both. In all probability the Fermi-liquid parameters
are small in magnitude (|a∗

1 |, |b∗
1| � 1). Nevertheless, the

changes in the de Haas–van Alphen oscillations arising due
to the Fermi-liquid effects may occur at kBT ∗ � 1. It is
worthwhile to remark that, due to the character of the electron
spectra, the Q2D conductors provide better opportunities for
observations of the Fermi-liquid effects in the de Haas–van
Alphen oscillations than conventional 3D metals. In the latter
the peak values of the oscillating functions δ, δs have the order
(h̄ω/μ)1/2(kBT ∗)−1/2. Typical values of the transfer integral
t are much smaller than those of the chemical potential μ;
therefore, significantly smaller values of kBT ∗ and/or greater
values of the parameters a∗

1 , b∗
1 are required for the Fermi-

liquid effects to be revealed in 3D metals.
Due to the special character of the electron spectra in the

Q2D metals, the variations in the magnetization oscillations

Figure 2. The effect of the Fermi-liquid interactions on the de
Haas–van Alphen oscillations in a Q2D metal at t/h̄ω∗ = 2. The
curves are plotted using equation (42), M0 = 2Nβ. Calculations are
carried out for a∗

1 = b∗
1 = 0 (top left panel), a∗

1 = b∗
1 = 0.02 (top

right panel), a∗
1 = b∗

1 = −0.02,−0.04 (bottom left and right panels,
respectively). The remaining parameters are the same as used in
figure 1. The dashed lines in the top right panel and in the bottom
panels represent oscillations in the system of noninteracting
quasiparticles.

may be noticeable at reasonably small values of the Fermi-
liquid constants. In figure 2 we compare the oscillations arising
in a gas of the charge carriers (top left panel) with those
influenced by the Fermi-liquid interactions between them. All
curves included in this figure are plotted within the limit
t > h̄ω. We see that both magnitude and shape of the
oscillations noticeably vary due to the Fermi-liquid effects.
When t/h̄ω∗ ∼ 0.1–0.5 the FS shape is closer to a perfect
unwarped cylinder; the magnetization oscillations accept the
well known sawtoothed shape, shown in figure 3. Again,
when the Fermi-liquid interaction produced terms are included
in the expression for �M , this brings some changes in the
magnitude and shape of the oscillations. These changes are
more significant when (a∗

1 + b∗
1) < 0.

The most important manifestation of the Fermi-liquid
effects occurs in very clean conductors at low temperatures
when T ∗ is reduced so much that (a∗

1 + b∗
1)δm is greater

than unity. Then the denominator of equation (42) becomes
zero at some points near the peaks of the DOS oscillations
provided that (a∗

1 + b∗
1) < 0. This is illustrated in figure 4.

Correspondingly,�M diverges at these points, which indicates
the magnetic instability of the system.

This means that the condition for the uniform magnetiza-
tion of the electron liquid is violated near the oscillation max-
ima, and diamagnetic domains could emerge. It is known that
both crystal anisotropy and demagnetization effects originating
from the shape of the metal sample could modify the relation
between B and H and cause magnetic instability, which results
in the occurrence of the diamagnetic domains [28] (see foot-
note 1). Our result demonstrates that the interactions of con-
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Figure 3. The effect of the Fermi-liquid interactions on the
de Haas–van Alphen oscillations in a Q2D metal at t/h̄ω∗ = 0.3.
The curves are plotted using equation (42) at a∗

1 = b∗
1 = 0 (top left

panel), a∗
1 = b∗

1 = 0.02 (top right panel), a∗
1 = b∗

1 = −0.02 (bottom
left panel), and a∗

1 = b∗
1 = −0.04 (bottom right panel). The

remaining parameters are the same as in figure 1. Dashed lines
represent the oscillations in the gas of charge carriers.

ducting electrons also may play an important role in magnetic
phase transitions. In principle, such magnetic instabilities may
appear in 3D metals as well, which was shown earlier, ana-
lyzing quantum oscillations in the longitudinal magnetic sus-
ceptibility of the isotropic electron liquid (see [18, 29]). How-
ever, we may hardly expect these transitions to appear in con-
ventional metals, for the requirements on the temperature and
intensity of scattering processes are very strict. Estimations
made in the earlier works [20, 29] show that the temperature
(including the Dingle correction) must be about 10 mK or less
for these diamagnetic phase transitions to emerge in conven-
tional metals. In contrast, the special (nearly cylindrical) shape
of the FS in Q2D conductors gives grounds to expect the above
transitions to appear in realistic experiments.

To summarize, in the present work we theoretically
analyzed possible manifestations of the FL interactions (that
is, residual interactions of excited quasiparticles) in the
de Haas–van Alphen oscillations in Q2D conductors. The same
approach can be easily applied for a metal with a crystalline
lattice of arbitrary symmetry, using the appropriate basis for
expanding the FL functions. So, the phenomenological Fermi-
liquid theory becomes more realistic and suitable to analyze
effects of electron interactions in actual metals.

We showed that the residual quasiparticle interactions
affect all damping factors inserted in the LK formula through
the renormalization of the cyclotron mass. The spin splitting
is renormalized as well, in a manner similar to the so-called
Stoner enhancement. The frequency of the oscillations remains
unchanged, for it is determined with the main geometrical
characteristics of the Fermi surface, which probably are not
affected by electron–electron interactions. However, the
shape and magnitude of the oscillations are affected due

Figure 4. The plot of the function Y = (a∗
1 + b∗

1)δ + a∗
1 b∗

1(δ
2 − δs2)

near the peak of the DOS quantum oscillations at t/h̄ω∗ = 0.3,
which illustrates that the denominator in equation (42) may become
zero in the vicinities of these peaks (left panel). The divergencies in
the oscillating part of magnetization described by equation (42)
indicate the magnetic instability caused by the Fermi-liquid effects
(right panel). The curves are plotted assuming a∗

1 = b∗
1 = −0.04.

The remaining parameters have the same values as used in figure 1.

to the FL effects, and their changes may be noticeable.
Also, the obtained results indicate that (under the relevant
conditions) the electron interactions may break down the
magnetic stability of the material, creating an opportunity for
the diamagnetic phase transition. The discussed effects may
be available for observations in realistic experiments, bringing
extra information concerning electronic properties of quasi-
two-dimensional metals.

Finally, we want to emphasize once again that the
renormalizations, most importantly mass renormalization,
are in addition to what is conventionally called ‘mass
renormalization’, namely, renormalization of the specific heat
coefficient compared to band structure calculations. It is
usually implicitly assumed that the weighted average of the
de Haas–van Alphen mass renormalization is exactly equal
to the specific heat renormalization, i.e., the FL effects are
small. In many cases this is a good approximation, but one
can never exclude a possibility that in some materials these
two masses may be different, namely, the de Haas–van Alphen
mass may be larger. A curious example when one would
have needed to exercise caution, but did not, is given by [30],
where quantum oscillations in a highly unconventional metal,
Nax CoO2, were measured, and it was taken for granted that the
large mass renormalization found in the experiment should be
fully accounted for in specific heat. Based on this assumption,
a natural and straightforward interpretation of the data was
abandoned and a counterintuitive explanation, requiring some
unverified assumptions, was accepted. It is possible that the
results reported in reference [30] give a case where additional
mass renormalization discussed in this paper is significant.
Hopefully, at some point we will see a careful and accurate
experimental study on various materials that would compare
the de Haas–van Alphen masses with the thermodynamic
masses and give us a quantitative answer on how different may
the two be in real life.
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Appendix

Here, we analyze the expressions for the oscillating functions
δ, δs within the limits of significant (t � h̄ω) FS warping. We
may use the standard asymptotics for the Bessel functions, at
x � 1, namely

Jk(x) ≈
√

2

πx
cos

[
x − πk

2
− π

4

]
. (43)

Substituting these approximation into equations (34) and (35)
we obtain

S(x) =
√

2

πx
cos

[
x − π

4

]{
1 + 3

π2

∞∑

m=1

1

m2

}
, (44)

Q(x) = 6

π2

√
2

πx
sin

[
x − π

4

] ∞∑

m=0

1

(2m + 1)2
, (45)

where

∞∑

m=1

1

m2
= π2

6
,

∞∑

m=0

1

(2m + 1)2
= π2

8
. (46)

So, we have:

S(x) = 5

4

√
2

πx
cos

[
x − π

4

]
, (47)

Q(x) = 3

4

√
2

πx
sin

[
x − π

4

]
. (48)

Using these results we may write the following expressions for
δ, δs at t � h̄ω:

δ = 5

4

(
h̄ω∗

2π2t

)1/2 ∞∑

r=1

(−1)r√
r

D(r) cos

[
2πr

F

B

]

× cos

[
4πr t

h̄ω∗ − π

4

]
cos

[
πr
ω∗

0

ω∗

]

− 3

4

(
h̄ω∗

2π2t

)1/2 ∞∑

r=1

(−1)r√
r

D(r) sin

[
2πr

F

B

]

× sin

[
4πr t

h̄ω∗ − π

4

]
sin

[
πr
ω∗

0

ω∗

]
. (49)

Or

δ =
(

h̄ω∗

2π2t

)1/2 ∞∑

r=1

(−1)r√
r

D(r) cos

[
πr
ω∗

0

ω∗

]

×
{

cos

[
2πr

Fmax

B
− π

4

]
+ 1

4
cos

[
2πr

Fmin

B
+ π

4

]}
.

(50)

Likewise, we obtain for δs

δ =
(

h̄ω∗

2π2t

)1/2 ∞∑

r=1

(−1)r√
r

D(r) cos

[
πr
ω∗

0

ω∗

]

×
{

sin

[
2πr

Fmax

B
− π

4

]
+ 1

4
sin

[
2πr

Fmin

B
+ π

4

]}
.

(51)

Here, Fmax and Fmin correspond to the maximum and minimum
cross-sectional areas of the FS, respectively.
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